

Estonian case study – Evaluation of agri-environment schemes' biodiversity objective

Eneli Viik Agricultural Research Centre eneli.viik@pmk.agri.ee

Good Practice Workshop. Assessing environmental effects of Rural Development Programmes. Practical solutions for the ex post evaluation 2007-2013.

November 27–28, 2015, Vilnius, Lithuania

Table of Content

- Introduction
- > What is being assessed?
- How is the assessment carried out?
- > What are the outcomes?
- Key strengths and weaknesses of the approach
- Recommendations to MA and evaluators

Introduction

Photo: Arne Ader

RDP 2007-2013 evaluation in Estonia

- Mid-term and ex-post evaluation public procurement
- Two ongoing evaluators:
 - 1., 3. and 4. axes Estonian University of Life Sciences → contract-based (2009 - 2016)
 - 2. axis Agricultural Research Centre (ARC) → a state agency within the jurisdiction of the Ministry of Rural Affairs
 - National procedures for co-operation, information flow and reporting
 - Financing evaluation activities: RDP Technical Assistance (TA) measure

Evaluation of environmental impacts is quite specific and it is problematic to identify the impacts with one year

Ongoing evaluation is contributing to mid-term and ex-post evaluation

What is being assessed?

Photo: Arne Ader

Estonian RDP 2007-2013 Axis 2

PÕLLUMAJANDUSUURINGUTE KESKUS

RDP 2007-2013 AXIS 2 – IMPROVING THE ENVIRONMENT AND THE COUNTRYSIDE

The area of SAPS, EFP/EFM and OF 2007-2014

OF requirements:

 Certified according to the Estonian Organic Farming Act

POLLUMAIANDUSUURINGUTE KESKU

- Requirements for organic plant production and for organic animal husbandry
- Compulsory trainings

EFM requirements which at least indirectly could favour biodiversity:

- Compulsory trainings raising awareness
- ≻Crop-rotation
- >30% under winter vegetation
- ≻15% leguminous crops
- ≻15% certified seed

>2-5 m wide grassland strip with perennial vegetation or other kind of landscape element between the field and public road

Preservation of cultural heritage sites and other valuable landscape elements

>No glyphosates from the time of emergence of cultivated plants until harvesting

How is the assessment carried out?

Photo: Ere Ploomipuu

Five topics for the evaluation of AES

Evaluation data is collected through existing databases, farm visits and through special studies on indicators

SOIL

Soil organic matter and soil fertility
Soil fertility (pH, K, P)
Soil nutrient dynamics

WATER

- Nutrient balance
 Pesticide use
- Water quality

LANDSCAPE

- Change in the landscape structure in terms of point, linear and area elements
- ➢General upkeep (visual appearance) of the farm

SOCIO-ECONOMY

- ➤Family farm income
- Share of organic products sold as "organic"
- Environmental awareness

Bumblebees and farmland birds monitoring areas 2009/2010-2014/2015

- 66 monitoring areas/farms
- One monitoring area = fields under monitoring that belong to one farmer
- 2 different regions (33 farms in both)
- Farms with 3 different support schemes:
 - > 22 organic farms (OF)
 - 22 environmentally friendly management farms (EFM)
 - 22 single area payment scheme (SAPS) farms
- AES application in the previous period
- Monitoring on arable land
- Average size of the field and land parcel in the rural municipality
- The size of the farm
- The possibility to locate a 1 km bird monitoring transect as a straight line on the land of one farmer

Bumblebees monitoring:

- Started 2006 but introduced monitoring sample since 2009
- 66 monitoring farms each year \succ
- Transect method (3 x June-August), transect width 2 m and length 500 m
- Bumblebee abundance, species and \succ flower density are noted down
- Field work: Estonian University of Life **Sciences**

Farmland birds monitoring:

- Started 2006 but introduced monitoring sample since 2010
- 66 monitoring farms each year
- Transect method (3 x April-June)
- \succ Breeding bird species and their abundance are noted down

Field number

roosa ni

Field work: Estonian **Ornithological Society**

Monitoring methodology

What are the outcomes?

Annual report from ARC to MA

- Deadline: every year 1st of April
- Results of studies, evaluation of measures
 - Interpretation and recommendations
 - In the evaluation of measures the main results of studies are included
- > MA can use:
 - Different figures, maps and tables
 - Results to adapt RDP policy design
 - Results to show the relevance of requirements
- Dissemination of results by ARC:
 - Info days for MA, paying agency, advisors, farmers better understanding
 - Articles, brochures
 - Feedback to farmers in the biodiversity monitoring sample

Main results of bumblebees monitoring

2012

Year

2011

2012

Year

2013

2014

•

OF EFM

SAPS

2013

2014

OF EFM

SAPS

*The indicator was significantly higher in farms with support type that is on the left side of the hyphen

Additional analyses for bumblebees

Estonian National Topographic Database:

Area objects (e.g. % of forest and agricultural land in the buffer)
Line objects (e.g. the length of ditches and tree lines in the buffer)
Landscape indices

In addition other analyses:

- study on plant species visited by bumblebees in 2014
- study on pesticide application on monitoring fields

Data of Estonian National Topographic Database

K008

Key strengths and weaknesses of the approach

Photo: Arne Ader

Key strengths of the approach

- Data series from the beginning of the programme
- Counterfactual (SAPS) included
- Different regions included
- Evaluation of different taxonomic groups included may react differently
- Interpretation of the results + recommendations
 - Additional analyses to interpret the results
- Communication with different stakeholders

Weaknesses of the approach

- Broad and shallow scheme (EFM) even longer data series needed than five years to identify changes (also because of the time lag)?
- The manager of the field(s) may change
- Arable land may change into permanent grassland
- Selection bias?
- Expenses every year
- How to differentiate impact of measures from other confounding factors?
 - Landscape context
 - Activities on monitoring fields
 - Activities and support type of adjacent fields
 - High variability between farms within the same support type
 - Farmers attitude
 - Weather conditions
 - Impact of other RDP measures
 - General situation in agriculture
 - Problems with taking into account confounding factors:
 - Problems with getting all the necessary data
 - The trade-off of including too many factors into analysis
 - Not enough knowledge in statistics

Recommendations for MA and evaluators

Recommendations to MA

- Evaluation of environmental impacts should be considered during the whole programming period, if possible then foresee it already in programme preparation phase (ongoing evaluation)
- Need to guarantee data availability from paying agency and different databases for evaluation activities
- Expenses every year RDP Technical Assistance (TA) measure?
- Communication with (ongoing) evaluators

Recommendations to evaluators

- Experts needed
- Data collection from the beginning of the programme
- Principles for selecting the monitoring farms
- Counterfactual needed
- Data analysis skills
- Additional background data and analyses needed to interpret the results – e.g. landscape, info about activities in the field etc
- Simple and understandable language
- Summaries and recommendations on base of the evaluation activities
- Dissemination of the results and communication with different stakeholders

Thank you for attention!

Photo: Arne Ader